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Traditionally, numerical time-integration algorithms for linear dynamics are analyzed only
with reference to the homogenous part of the solution [1]. Although greatly simpli"ed and
able to provide useful indications about the error evolution, this accuracy analysis is not
complete. The accuracy analysis of the forcing term was performed in the past only in a few
studies [2], usually limited to the investigation of the local truncation error.

A more complete approach for the accuracy analysis was presented by Preumont [3].
The time-integration operators are treated as digital recursive "lters, so that the transfer
functions of the discretized equations can be derived. The comparison between the
numerical and the exact transfer functions provides information regarding the algorithm
behavior with a forcing term and allows one to detect possible spurious resonance
conditions.

This approach was adopted for the analysis of non-dissipative second and higher order
algorithms in reference [4]. Higher order methods showed a better performance than
traditional second order ones in the quasi-resonance condition. This analysis was
performed only for conservative methods. It is well known that when a structural system is
discretized by the "nite-element methodology, only the vibration modes associated with the
lower frequencies are meaningful [1]. Therefore, it is desirable that the time-stepping
method possess high-frequency dissipation in order to damp out the inaccurate response of
the high-frequency modes. The HHT-a method [1], characterized by second order
accuracy, is one of the most popular dissipative algorithms for structural dynamics.
However, due to its relatively low order accuracy, a non-negligible error may result in
long-term simulations.

In recent years, extensive research has been conducted on dissipative higher order
methods (see for example the surveys given by Fung [5, 6]). The main feature of these
methods is the coupling of high-frequency dissipation and low rate of error growth, which is
particularly advantageous in long-term simulations. In particular, the time discontinuous
Galerkin (TDG) methodology of time discretization leads to very attractive higher order
dissipative methods. Although at an increased computational cost, TDG algorithms show
an improved performance over traditional second order methods [7].

In this work, the widely used HHT-a scheme and a TDG method are compared, with
reference to the behavior near the resonance condition by means of the approach
introduced by Preumont [3]. It will be shown that the TDG algorithm has an improved
performance in such a condition compared to the HHT-a method. Therefore, the TDG
algorithm should be used in analyses near the resonance condition when an algorithm with
high-frequency modes dissipation is required.
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The model problem used to evaluate the numerical algorithms is the typical modal
initial-value problem in "rst order form
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where superposed dots denote di!erentiation with respect to time t, u is the unknown
displacement, v the unknown velocity, the real non-negative parameter u represents
a natural frequency of the system, m the damping ratio and f is the applied force. For
simplicity, we consider m"0. Assuming that the forcing term can be expanded in a Fourier
series and invoking the superposition principle [8], it is su$cient to consider a generic
sinusoidal component. Setting f (t)"e*lt, the exact response in the mode corresponding to
the frequency u is given by
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are the homogeneous and the particular solution respectively.
Let 0"t

0
(t

1
(2(t

N
"t

f
be a partition of the time domain with step size

Dt"t
n`1

!t
n
. Assuming that the numerical solution at t"t

n
can be calculated from the

(n!1)th time step, one-step time-integration algorithms can be formulated as time-advance
schemes

y
n`1

"Ay
n
#L

n
, n"0,2,N!1, (8)

where u
n
and v

n
are the numerical approximations to u(t

n
) and uR (t

n
), respectively, yT

n
is the state

variable vector, A the ampli"cation matrix, L
n
the load vector, and the starting value y

0
is

obtained according to the initial conditions. In particular, the load vector can be written as

L
n
"Br

n
, (9)

where the vector r
n

collects the evaluations of the forcing term at some given sampling
points and B is a matrix which does not depend on the forcing term. In the case of HHT-a
methods, one obtains
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where d"(4#X2!X2a!X2a2#X2a3) and X"uDt.
The TDG algorithms are derived from Galerkin weighted residual formulations of

equations (1)}(4), where the initial conditions (3)}(4) are enforced weakly on each time step.
Within a typical time step [t

n
, t

n`1
], the approximate solution is represented by trial

polynomials in the variable t:

uh (t)"N(t)Tu6 , vh(t)"N(t)Tv6 , (14)

where u6 and v6 are the vectors of unknown coe$cients and N is the vector of time
interpolation polynomials. The test functions are chosen as

uJ h(t)"N(t)Tu8 , vJ h (t)"N (t)Tv8 . (15)

Notice that the trial functions are de"ned by means of the same time interpolants for the
displacement and the velocity, since the analysis reported by Hulbert [7] has shown that
this choice leads to optimal accuracy and stability. The TDG formulation with reference to
the undamped modal problem is stated as follows: "nd uh and vh such that
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for all uJ h and vJ h. Enforcing this condition, one obtains a system of linear algebraic equations
in the unknowns u6 and v6 , which can be written as
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Once the system is solved, a time-stepping method can be de"ned by setting
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The method considered here is based on the use of linear Lagrangian polynomials as
time-interpolation functions and the Simpson rule to evaluate the integral depending on the
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forcing term. The ampli"cation matrix is
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respectively. Since the initial conditions are enforced weakly, the numerical solution can be
discontinuous between time steps, hence the denomination of TDG algorithms.

As far as the classical accuracy analysis is concerned, the HHT-a methods with
!1

3
)a)0 are unconditionally stable and second order accurate, while the TDG

algorithm described by equations (21) and (22) is unconditionally stable and third order
accurate.

A more complete analysis for the accuracy of the loading term is based on the
investigation of exact and numerical transfer functions [3]. For the modal initial value
problem (1) with m"0 and f (t)"e*lt, the exact transfer function has the well-known form
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An expression for the transfer function of the time advance scheme (8) can be obtained
and compared with equation (24). Assuming f (t)"e*lt, the solution at t"t
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where H
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are the transfer function for the numerical displacement and velocity.
Using equations (8) and (25), one obtains
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where I is the identity matrix, rT"[1, e*lDt] for the HHT-a methods and
rT"[1, e*lDt@2, e*lDt] for the TDG algorithm.

The comparison of H
u

and H
v

with the exact forms H*
u

and H*
v
"ilH*

u
illustrates the

behavior of the algorithm as regards the forcing term.
In Figure 1 the HHT-a scheme with a"!1/3 and the TDG method are compared

assuming X/2n"0)2. The ratio DH
u
D/ DH*

u
D is plotted versus the ratio e"l/u. It can be noted

that a spurious peak occurs near the resonance condition, which corresponds to e"1. As
illustrated in the picture, the width of the disturbance in the TDG algorithm is greatly
reduced compared to the HHT-a scheme.



Figure 1. DH
u
D/ DH*

u
D: - - - -, HHT-a; **, TDG methods.
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In order to get more insight, it is useful to report an analytical expression for the ratio
DH

u
D/ DH*

u
D for the TDG algorithm
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where q"cos(eX/2). Expanding in a series about X"0, one obtains
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thus showing that the spurious disturbance is of the fourth order.
Numerical tests have been performed in order to evaluate the TDG method and to

compare it with the HHT-a scheme. A single-degree-of-freedom system excited by
a sinusoidal force with l close to the system frequency u is considered. The numerical
simulations have been conducted setting l"1 and Dt"¹/20, where ¹"2n/u is the
free-vibration period of the system and analyzing the response up to t

f
"20¹. The time

histories of the displacement error (Figure 2), calculated as the di!erence between the exact
quantity and the numerical one, show that the error accumulation of the HHT-a scheme is



Figure 2. HHT-a and TDG methods: a"!1/3; e"0)99, displacement.

604 LETTERS TO THE EDITOR
quite fast as the resonance condition is approached (e"0)99). The same picture shows that
the error accumulation for the TDG method is remarkably slower. As a matter of fact, the
errors are at least 30 times lower than those obtained with the HHT-a scheme. Hence, the
higher accuracy of the TDG method is evident.

To conclude, this analysis reveals that even in the presence of numerical dissipation,
traditional algorithms such as the HHT-a scheme present spurious resonance conditions
which can adversely a!ect the solution. On the contrary, the TDG methods show an
improved performance near the resonance conditions both in the theoretical accuracy
analysis and in the numerical tests. Thus, also with dissipative methods, higher order
accuracy is recommended when high-quality simulations are required near the resonance
condition. Although the TDG methods are more computationally expensive than
traditional dissipative second order ones, e!ective implementation techniques have been
recently developed [9]. Taking into account their remarkable computational
characteristics, these algorithms appear as a valuable alternative to traditional second order
disspative methods.
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